Parallel-iterated Runge-Kutta methods for stiff ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Additive Runge-Kutta Methods for Stiff Ordinary Differential Equations
Certain pairs of Runge-Kutta methods may be used additively to solve a system of n differential equations x' = J(t)x + g(t, x). Pairs of methods, of order p < 4, where one method is semiexplicit and /(-stable and the other method is explicit, are obtained. These methods require the LU factorization of one n X n matrix, and p evaluations of g, in each step. It is shown that such methods have a s...
متن کاملImplicit Runge-Kutta Methods for Lipschitz Continuous Ordinary Differential Equations
Implicit Runge-Kutta(IRK) methods for solving the nonsmooth ordinary differential equation (ODE) involve a system of nonsmooth equations. We show superlinear convergence of the slanting Newton method for solving the system of nonsmooth equations. We prove the slanting differentiability and give a slanting function for the involved function. We develop a new code based on the slanting Newton met...
متن کاملRunge-Kutta Methods for Linear Ordinary Differential Equations
Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODEs) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficient...
متن کاملParallel Iterated Runge Kutta Methods and Applications
The iterated Runge Kutta IRK method is an iteration scheme for the numerical solu tion of initial value problems IVP of ordinary di erential equations ODEs that is based on a predictor corrector method with an Runge Kutta RK method as corrector Embed ded approximation formulae are used to control the stepsize We present di erent parallel algorithms of the IRK method on distributed memory multip...
متن کاملExponential Runge-Kutta Methods for Stiff Kinetic Equations
Abstract. We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1993
ISSN: 0377-0427
DOI: 10.1016/0377-0427(93)90271-c